
The Eight-Puzzle Solver with A* Algorithm

Jiaqi Xiong jiaqixiong01137@gmail.com
04-November-2018

Table of Contents

Introduction .. 2

Algorithm .. 2

Uniform Cost Search ..3

A* with the Misplaced Tile heuristic ...3

A* with the Manhattan Distance heuristic ..3

Comparison of Algorithms on Sample Puzzles ... 3

Conclusion ... 5

Reference: ... 5

Appendix: A trace of the Manhattan distance A* on an Example .. 6

Instructed by: Dr Eamonn Keogh eamonn@cs.ucr.edu

mailto:jiaqixiong01137@gmail.com
mailto:eamonn@cs.ucr.edu

 2

Introduction
Some people (including me) in their childhood are fond of games, among which the 8-Puzzle
prevails. The object of the puzzle is to slide the tiles horizontally or vertically into the empty space
until the configuration matches the goal configuration as shown in the Figure 1 below.

Figure 1: A typical instance of the 8-puzzle.

When it comes to create an intelligent machine to solve this kind of problem automatedly,
however, the average solution cost for a randomly generated 8-puzzle instance is about 22 steps
and the branching factor is about 3. (When the empty tile is in the middle, four moves are possible;
when it is in a corner, two; and when it is along an edge, three.) This means if we use an
exhaustive tree search, as what we did with 8-queen, to depth 22 would look at about 322 ≈ 3.1

× 1010 states! Thus, we should rethink better algorithms.

The following report presents my findings about A* algorithm through the process of project
completion. It explores Uniform Cost Search, and the Misplaced Tile and Manhattan Distance
heuristics applied to A*. To compare these 3 algorithms, they were tested using language “ c++”
in visual studio community 2017, and the full code for the project can be found on my GitHub.

Algorithm
Since combining Uniform Cost Search, where enqueue nodes in order of cost g(n), and Hill
Climbing Search, where enqueue nodes in order of estimated distance h(n) to goal, creates
optimal, complete and very fast A* algorithm, intuitively, the main idea of A* algorithm is to
enqueue nodes in order of estimate cost to goal, that’s f(n) = g(n)+h(n). From the project prompt,

if we set h(n)≡0，then Uniform Cost Search is simply A*.

Observe the following pseud-code general search algorithm:

We can be inspired that when three algorithms: Uniform Cost Search, A* using the Misplaced Tile
heuristic, and A* using the Manhattan Distance heuristic are implemented, most procedures are
the same except queueing-function

function general-search(problem, QUEUEING-FUNCTION)
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-
STATE))
loop do

if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION(nodes,

EXPAND(node, problem.OPERATORS))

https://github.com/xiongjia000777/eight-puzzle-solver

 3

Uniform Cost Search
As discussed above, Uniform Cost Search is just A* with h(n) hardcoded to equal 0, and it will
expand the cheapest node, where the cost is the path cost g(n). It also should be noticed that
since in this project there are no weights regards to expansion operators, and each expanded
node has a cost of 1, Uniform Cost Search here becomes Breadth First search, where the path
cost is just the depth.

A* with the Misplaced Tile heuristic
The Misplaced Tile heuristic h1(n)= the number of misplaced tiles. For example, as for Figure 1,
not counting the placeholder for the blank tile, all of the eight tiles are out of position, so the
start state would have h1(Start State) = 8. Because apparently any tile that is out of place must
be moved at least once, h1 is an admissible heuristic and its value is the lower the better when
applied to the 8-puzzle

A* with the Manhattan Distance heuristic
Although Manhattan Distance Heuristic h2(n) like h1(n) also focuses on misplaced tiles, h2(n)
further considers the number of tiles away from goal state position of misplaced tiles, that’s h2 =
the sum of the distances of the tiles from their goal positions. Using the same example above
again, not counting the position of ‘blank’, based on their positions in the start state and their
goal state positions, g(n) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18. h2 is also admissible because all any
move can do is move one tile one step.

Comparison of Algorithms on Sample Puzzles
There were six puzzles of varying difficulty given to test provided by Instructor as shown in Figure
2.

Figure 2: 6 Test cases with different difficulty

The easiest among the six is the trivial puzzle (the initial state being the goal state) and the
hardest puzzle is even impossible to solve (the goal state except the position of tiles 7 and 8
swapped).

Since the only meaningful comparisons for the algorithms are time (number of nodes expanded)
and space (the maximum size of the queue) from prompt, the Figure 3 and Figure 4 below provide
a visual representation of algorithms time and space complexity using the number of nodes
expanded and the maximum queue size, respectively.

 4

It should be pointed out that my program can know that puzzle impossible is unsolvable, so it
does not search that puzzle.

It was found that the easier the puzzle, the difference between the three algorithms relatively
more negligible. However, if the puzzle is still solvable but very difficult, then the existence and
quality of heuristics make a significant difference in the time and space complexity.

Figure 3: the number of nodes expanded of 6 puzzles

Figure 4: the maximum queue size of 6 puzzles

Trivial Very Easy Easy doable Oh Boy

Uniform Cost Search 0 7 6 45 27750

Misplaced Tile heuristic 0 3 4 7 14867

Manhattan Distance heuristic 0 3 3 7 1602

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f
N

o
d

es
 E

xp
an

d
ed

Number of Nodes Expanded

Uniform Cost Search Misplaced Tile heuristic Manhattan Distance heuristic

Trivial Very Easy Easy doable Oh Boy

Uniform Cost Search 1 5 4 18 11100

Misplaced Tile heuristic 1 3 3 4 5546

Manhattan Distance heuristic 1 3 3 4 652

1

10

100

1000

10000

100000

Th
e

M
ax

im
u

m
 S

iz
e

o
f

th
e

Q
u

eu
e

The Maximum Size of the Queue

Uniform Cost Search Misplaced Tile heuristic Manhattan Distance heuristic

 5

Conclusion
From what has been discussed and tested above, we can find some features of heuristics from
the results:

1. For simple problems, having a (better) heuristic or not does not make a significant
difference.

2. However, as the problems get harder, having a heuristic like Misplaced Tiles makes sense
while having a better heuristic like Manhattan distance really improve the performance
of the solver more.

Applying these features to the listed three algorithms, expectations are consistent with practical
results: Among the three algorithms, the A* with Manhattan Distance Heuristic performed best,
followed by the A* with Misplaced Tiles Heuristic, and Uniform Cost Search without Heuristic did
worst. This can also be regarded as The Misplaced Tile and Manhattan Distance heuristics
improve the performance of Uniform Cost Search, which has a time complexity O(bd) and a space
complexity of O(bd), where b is the branching factor and d is the depth of the solution in the
search tree. While both the Misplaced Tile Heuristic and Manhattan Distance Heuristic save the
run time and space cost of Uniform Cost Search, it can be found that the Manhattan Distance
Heuristic helped more. That’s to say, while heuristics will improve the efficiency in both time and
space of a blind search, a better heuristic should be chose for better assistance.

Reference:
1. https://www.geeksforgeeks.org/check-instance-15-puzzle-solvable/ (for an idea of how

to judge whether a puzzle problem is solvable)
2. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;

Pearson Education Limited,. (for exact definition of the Misplaced Tile and Manhattan
Distance heuristics, pseud-code of Uniform Cost Search)

3. Slides “Heuristic Search” and “Blind Search” by Dr Eamonn Keogh (for review of the
three algorithms)

4. Sample project report provided by Dr Eamonn Keogh (for understanding high-quality
work)

5. http://www.cplusplus.com/reference/queue/priority_queue/ (for reviewing the usage
of priority_queue)

6. http://www.cplusplus.com/reference/stack/stack/ (for reviewing the usage of stack)
7. http://www.cplusplus.com/reference/cstring/memset/ (for reviewing the usage of

memset)

All the important code is original. Unimportant subroutines that are not completely original are

1. “struct cmp { bool operator() (Node* &a, Node* &b)const { return a->priority >
b->priority; } };”

2. “priority_queue<Node*, vector<Node*>, cmp> frontier;”

https://www.geeksforgeeks.org/check-instance-15-puzzle-solvable/
http://www.cplusplus.com/reference/queue/priority_queue/
http://www.cplusplus.com/reference/stack/stack/
http://www.cplusplus.com/reference/cstring/memset/

 6

They are operator overloading which is available at
https://stackoverflow.com/questions/14981590/priority-queue-declaration-and-bool-operator-
declaration

Appendix: A trace of the Manhattan distance A* on an Example
Here is a trace of the Manhattan distance A* on the following problem:

Welcome to JIAQI XIONG's 8-puzzle solver!
Please type “1” to use a default puzzle, or “2” to enter your own puzzle.
1
Please enter your choice of algorithm:
1. Uniform Cost Search.
2. A* with the Misplaced Tile heuristic.
3. A* with the Manhattan distance heuristic.
3
Expanding state...
1 2 3
4 0 6
7 5 8

The best state to expand with a g(n) = 1 and h2(n)= 2 is
1 2 3
4 5 6
7 0 8 Expanding this node...

The best state to expand with a g(n) = 2 and h2(n)= 0 is
1 2 3
4 5 6
7 8 0 Expanding this node...

Congratulations! We succeed arriving the goal!
To solve this problem the search algorithm expanded a total of 6 nodes.
The maximum number of nodes in the queue at any one time was 5.
The depth of the goal node was 2.

https://stackoverflow.com/questions/14981590/priority-queue-declaration-and-bool-operator-declaration
https://stackoverflow.com/questions/14981590/priority-queue-declaration-and-bool-operator-declaration

	Introduction
	Algorithm
	Uniform Cost Search
	A* with the Misplaced Tile heuristic
	A* with the Manhattan Distance heuristic

	Comparison of Algorithms on Sample Puzzles
	Conclusion
	Reference:
	Appendix: A trace of the Manhattan distance A* on an Example

