

Senior Project

[Undergraduate Thesis]

Modularized Design and Implementation of

MiniJava-MIPS Compiler in Java

School School of Engineering Science

Major Biomedical Engineering.

Name Jiaqi Xiong

Student ID U201514474

Instructor Yong Deng and Mohsen Lesani

June 27th, 2019

http://ses.hust.edu.cn/English.htm
http://ses.hust.edu.cn/info/1072/1312.htm
https://www.cs.ucr.edu/~lesani/

HUST Senior Project [Undergraduate Thesis]

I

Abstract

In this internet era, our daily life depends on various software. But before a

program can be run, its original code must be translated into binary machine code.

Compiler plays a key role during this translation process. It's significant to design and

compilers for the development of computer compiling in the future.

A four-phase design of.MiniJava-MIPS compiler programmed in Java language is

presented. Firstly the compiler type check a program written in MiniJava language, then

the program is translated to vapor code during intermediate code generation phase, next

the Vapor code is translated to the Vapor-M code in register allocation phase, and

eventually to MIPS instruction in instruction selection phase. Four phases are

modularized with the output of the previous module to be the input of the next module,

thereby facilitating porting and local optimization.

Key Words：Modularized compiler; MiniJava language; Visitor Pattern; Type-Che

-cking

HUST Senior Project [Undergraduate Thesis]

II

Content

Abstract .. I

1 Introduction ... 1

1.1 Significance of Self-developed Compiler ... 1

1.2 Critical Techniques in MiniJava-MIPS Compiler ... 2

1.3 Purposes of the Research ... 3

2 Type Check .. 5

2.1 Introduction ... 5

2.2 MiniJava Language.. 5

2.3 Symbol Table ... 8

2.4 Implementation .. 11

2.5 Test Results .. 16

2.6 Conclusion ... 18

3 Intermediate Code Generation .. 19

3.1 Introduction ... 19

3.2 Vapor Language ... 19

3.3 Methodology .. 20

3.4 Implementation .. 21

3.5 Test Results .. 25

4 Register Allocation .. 27

4.1 Introduction ... 27

4.2 Vapor-M Language .. 27

4.3 Register Table .. 28

4.4 Linear Scan Algorithm .. 28

4.5 Test Results .. 33

5 Activation Records and Instruction Selection .. 34

HUST Senior Project [Undergraduate Thesis]

III

5.1 Introduction ... 34

5.2 Implementation .. 34

5.3 Test Results .. 37

6 Summary .. 38

Acknowledgements .. 40

References ... 41

HUST Senior Project [Undergraduate Thesis]

2

1 Introduction

1.1 Significance of Self-developed Compiler

People are increasingly inseparable from various software written in some

programming language. But a program must be translated into a form in which it can be

executed by a computer at first. This is where the compiler plays an important role.

Generally, higher-level programming languages are friendly to programmers, but are less

efficient. Optimizing compilers include techniques to improve the performance of

generated code, thus compensating the inefficiency. Since programming in high-level

languages is normal, the performance of a computer system is determined not only by its

raw speed but also by how well compilers can exploit its features. Thus, in modern

computer architecture development, compiled code is used to evaluate the proposed

architectural features. While we normally think of compiling as a translation from a high-

level language to the machine level, the same technology can be applied to translation

between different kinds of languages. Compiled Simulation is such an important

application. In electronic circuit course, students are always required using FPGA to

implement a digital clock. Simulation is used to validate this design written in Verilog.

But in practical situation, it can be very expensive in some experiment with many possible

designs on many different input sets. Instead of writing a simulator that interprets the

design, it is faster to compile the design to produce machine code[1]. Considering

applications of compilers mentioned above, the necessity to develop compilers is obvious.

The purpose that people need compile a new source language, or create a new target

language, or both, stimulates programmers to write new compilers. Regardless of

profitable motivation, writing a compiler is a kind of training in software engineering.

Some lessons and experience in software development can be used to improve the

reliability and maintainability of the final product[2]. For students major in computer

science or related fields, they should have learned knowledge like object-oriented

programming language, data structure, algorithm and computer architecture. A design

and implementation of a compiler is not only to see the further theory behind different

HUST Senior Project [Undergraduate Thesis]

3

components of a compiler but also a study of how to digest theories and put them into

practice. As writing a compiler is a large-scale project, it also provides students with

chance to cooperate in a group and think moral and professional issue.

1.2 Critical Techniques in MiniJava-MIPS Compiler

1.2.1 Multi-pass

A multi-pass compiler is a type of compiler that processes the source code or abstract

syntax tree of a program several times. It converts the program into one or more

intermediate representations in steps between source code and machine code, and which

reprocesses the entire compilation unit in each sequential pass. Each pass takes the result

of the previous pass as the input, and creates an intermediate output. In this way, the

intermediate code is improved pass by pass, until the final pass produces the final code.

This contrasts with a one-pass compiler, which traverses the program only once[3].

One-pass compilers are unable to generate as efficient programs as multi-pass

compilers due to the limited scope of available information. Many effective compiler

optimizations require multiple passes over a block, subroutine, module or even an entire

program. Some programming languages simply cannot be compiled in a single pass, as a

result of their design. For example, a language may allow references to the not-yet-

declared items, so no code can be generated until the entire program has been scanned. In

contrast, some programming languages include special constructs to allow one-pass

compilation. For MIL- MINI-L compiler[4], that project mainly focuses on lexical analysis

and parsing. Performing one-pass code generation is a simple choice since it avoids

building and traversing a syntax tree. However, we are provided JavaCC parser

generator[5] and Java Tree Builder[6], which means we will have a complete parser for

MiniJava and a set of classes used for traversing the syntax tree. Two- pass is a better

choice.

1.2.2 Visitor Pattern

HUST Senior Project [Undergraduate Thesis]

4

Java Tree Builder from Purdue University, is a syntax tree builder to be used with

the Java Compiler Compiler (JavaCC) parser generator from Sun Microsystems. It

utilizes the visitor design pattern, which enables the definition of a new operation on an

object structure without changing the classes of the objects for object-oriented

programming.

The visitor pattern divides the code into an object structure and a Visitor, which is

akin to functional programming. A Visitor overloads a visit method for each class. The

visit methods describe both actions, and access of subobjects. A visitor method for a class

“A” takes an argument of type “A”. Each class must have an accept method, each of

which takes a visitor as argument. The purpose of the accept methods is to invoke the

visit method in the visitor which can handle the current object. The control flow goes

back and forth between the visit methods in the visitor and the accept methods in the

object structure[7].

When using the Visitor pattern, the set of classes must be fixed in advance, thus

adding new classes to the object structure is hard. Visitor’s approach assumes that the

interface of the data structure classes is powerful enough to let visitors do their job. As a

result, the pattern often forces providing public operations that access internal state, which

may compromise its encapsulation[7]. However, visitor makes adding new operations easy

by simply writing a new visitor. And the visitor pattern has an edge over Instanceof and

Type Casts and Dedicated methods by adding new methods without recompilation.

1.3 Purposes of the Research

The goal of this work is to design and implement the main phases of a modern

MiniJava-to-MIPS compiler. This paper consists of four phases: type-checking,

intermediate code generation, register allocation, and activation records and instruction

selection. For each phase, the objective will be introduced firstly. The specification for

each language related to this work, such as MiniJava, Vapor and Vapor-M, will also be

presented. The design part will simulate the flow of thought when facing the task to

explain how to deal with the task and how to improve the work in the future. It also

HUST Senior Project [Undergraduate Thesis]

5

includes challenges encountered during implementation and how to cope with them

through several examples. To assess the validation of each phase, results from testers[8]

provided by professor Lesani will be shown.

HUST Senior Project [Undergraduate Thesis]

6

2 Type Check

2.1 Introduction

The goal of phase one is to write a type checker for MiniJava. MiniJava is a subset

of java that includes the bare minimum of Java. Given a program, the type checker checks

at compile time that type mismatch does not happen at run time. It either approves or

rejects the program. The set of rules that the type checker checks are represented as a type

system which will be introduced in chapter 2.2.2.

With the help of JavaCC parser generator and Java Tree Builder, we will have a

complete parser for MiniJava, a set of classes used for traversing the syntax tree, and two

different default visitors: DepthFirstVisitor and GJDepthFirst. Thus, all the remaining

work for type checking a MiniJava program is based on this abstract syntax tree by

extending GJDepthFirst. The first thing we need to do is to get familiar with the grammar

of MiniJava and the set of rules that the type checker checks.

2.2 MiniJava Language

MiniJava is a subset of Java. The meaning of a MiniJava program is given by its

meaning as a Java program. MiniJava differs from Java mainly in three aspects[9]:

1) Overloading is not allowed in MiniJava.

2) The MiniJava statement “System.out.println(...);” can only print integers.

3) The MiniJava expression “e.length” only applies to expressions of type int[].

2.2.1 Grammar

To be specific, the grammar is specified by figure 2-1 using the following

metanotation[10]:

1) Non-terminal symbols are words written in italic form;

2) A production is of the form lhs ::= rhs, where lhs is a nonterminal symbol and

rhs is a sequence of nonterminal and terminal symbols, with choices separated

by |, and sometimes using “. . . " to denote a possibly empty list;

HUST Senior Project [Undergraduate Thesis]

7

3) Superscripts and subscripts are used to distinguish metavariables.

Figure 2-1 Grammar for MiniJava

2.2.2 Items need checking

After learning the grammar for MiniJava, then the items we need to check can be

summarized. The complete nodes that require type checking in the abstract syntax tree

are shown in the table 2-2. For those who want to flick through the items, the table 2-1

and an example for ArrayAssignmentStatement are enough.

Table 2-1 Typical Type Rules Need Checking

Syntax tree node Items need checking

MethodDeclaration return value type

ArrayAssignmentStatement
id type, offset type, right hand value type,

ids used has been declared

IfStatement, WhileStatement condition type

HUST Senior Project [Undergraduate Thesis]

8

AndExpression, CompareExpression,

NotExpression
primary expression type

For example, for the array assignment statement “b[0] = a + 1；”, we need check

whether b is an array type, whether the offset of the array is an int type, whether the right

hand side value is an int type, and whether a and b has been declared before. But how can

we know the type of a and b? The symbol table helps us.

Table 2-2 The Whole Type Rules Need Checking

Syntax Tree Node Items need checking

MethodDeclaration
The type of return value doesn’t match the

type of method declaration

AssignmentStatement

The type of right hand value doesn’t

match that of left hand value

Identifier used has not been declared

ArrayAssignmentStatement

The identifier is not an array type

The offset of the array is not an int type

Right hand value is not an int type

Identifier used has not been declared

IfStatement Condition is not a Boolean

WhileStatement Condition is not a Boolean

PrintStatement The content printed is not an int type

AndExpression PrimaryExpression is not a Boolean type

CompareExpression PrimaryExpression is not a Boolean type

PlusExpression PrimaryExpression is not a Boolean type

MinusExpression PrimaryExpression is not a Boolean type

TimesExpression PrimaryExpression is not a Boolean type

HUST Senior Project [Undergraduate Thesis]

9

ArrayLookup
The identifier is not an array type

The offset of the array is not an int type

ArrayLength The identifier is not an array type

MessageSend

ExpressionList doesn’t match

parameters of method declaration

The method called has not been declared

ArrayAllocationExpression The offset of the array is not an int type

AllocationExpression The class used has not been declared

NotExpression PrimaryExpression is not a Boolean type

2.3 Symbol Table

An environment is a set of bindings denoted by the ↦ arrow. For example, we could

say that the environment σ0 contains the bindings {g ↦ string, a ↦ int}, meaning that the

identifier a is an integer variable and g is a string variable. This first step is characterized

by the maintenance of symbol tables (also called environments) mapping identifiers to

their types and locations. As the declarations of types, variables, and functions are

processed, these identifiers are bound to "meanings" in the symbol tables. When uses of

identifiers are found, they are looked up in the symbol tables. Each local variable in a

program has a scope in which it is visible. For example, in a MiniJava method “m”, all

formal parameters and local variables declared in “m” are visible only until the end of

“m”. As the semantic analysis reaches the end of each scope, the identifier bindings local

to that scope are discarded[11].

In terms of structure, the symbol table is used to describe and save the structure of

the entire MiniJava program, which contains the class structure, method structure and

variable types. In terms of usage, the symbol table needs to have an approach to query its

contents, so that it can be used in the second step. The symbol table consists of an abstract

class and four instance classes, as shown in figure 2-2.

HUST Senior Project [Undergraduate Thesis]

10

Figure 2-2 Class diagram for symbol table

To enable type checking of MiniJava programs, the symbol table should contain all

declared type information:

1) each variable name and formal-parameter name should be bound to its type;

2) each method name should be bound to its parameters, result type, and local

variables;

3) each class name should be bound to its variable and method declarations.

or

1) variable name ↦ type

2) formal-parameter name ↦ type

3) method name ↦ {parameters, result type, and local variables}

4) class name ↦ {variable and method declarations}

HUST Senior Project [Undergraduate Thesis]

11

For example, consider figure 2-3, which shows a program and its symbol table.

Figure 2-3 An example program and its symbol table

The class “A” is mapped to a ClassTables for its field “a” and method “run”. The

Method run is mapped to a MethodTable with both its result type integer and local

variable “b”.

The abstract table class defines three instance variables: the class name, the method

name, and a AllClassTable(Global). The class name and method name are for the

convenience of each ClassTable, MethodTable, and variable type (class members have

no method name) when they are created, specifying the class name to which they belong

(the ClassTable has no method name) and the method name. The AllClassTable is used

to call the AllClassTable at any time to query the class and MethodTables. There are two

methods defined in the abstract class, namely the exit function and the MatchType

function, which is a comparison of the two variable types.

There are four instance classes, all of which extended from abstract classes, which

are AllClassTable, ClassTable, MethodTable, and variable types (the variable type is

called TypeTable but it is not a table). Note that in order to facilitate the query, all the

data that needs to be stored in this phase is stored using HashTable. The AllClassTable

uses a HashTable to store all classes. The storage method is that the class name

corresponds to its ClassTable object, and two methods are provided, namely, a method

for storing the ClassTable and another for querying the ClassTable. The method for

storing the ClassTable can also check whether the class name is repeated. A ClassTable

is used to store information about a class, which contains member variables, member

methods, and its parent class name for this class. Both member variables and member

methods use HashTable, and can store or query the corresponding variable type or

HUST Senior Project [Undergraduate Thesis]

12

MethodTable based on the variable name or method name. The MethodTable is used to

store information about a method, which contains the return type, parameter type, and

local variables of the method. Here the parameter type is stored using a vector to compare

whether the parameter type matches. The local variable uses HashTable, the storage

method is the variable name corresponding to the variable type, it should be noted that

the method parameters also belong to the local variable, so the method variable should be

added when adding the local variable. The variable type has only one member variable of

type String, which means that it represents a variable type. It only needs to represent the

type. There is a method defined in the variable type to check if the type is a class type

(not a type of int, boolean, and int[]).

2.4 Implementation

As mentioned in Chapter 1.2.2, if we tried to do type checking and intermediate code

generation in a single pass, then we might need to type check a call to a method that is

not yet put into the symbol table. To avoid such situations, two passes are adopted.

Correspondingly, the implementation is divided into two steps. The first step is to

construct a symbol table by analyzing the MiniJava program. The second step is type

checking.

In the construction of the symbol table, we need to design a visitor to traverse the

syntax tree, and store the symbol types of each definition statement one by one. Thus, this

visitor inherits the GJDepthFirst class (because it contains definitions of generic incoming

parameters and outgoing parameters) and overrides the access methods of the nodes that

need to be manipulated.

The generic incoming and outgoing parameters of these visitors are AbstractTable,

so that all tables can be passed in to store information and return with stored information.

In this visitor, to traverse and get information of a node only need to accept this node.

For example, when traversing to the VarDeclaration node “n” (Figure 2-4), this node “n”

is a variable declaration. And node “n: has three child nodes “f0”, “f1” and “f2”, such as

“int a”; In this definition, “int” is “f0”, “a” is “f1”, and the semicolon is “f2”. At this point

HUST Senior Project [Undergraduate Thesis]

13

we need the type and name of this variable, the type can be obtained by “n.f0.f0.which”,

which is 0, which means the type is int, the name can be obtained by “n.f1.f0.tokenimage”.

Finally, we need to save the type and name to the object, then determine whether the

incoming “argu” is a ClassTable or a MethodTable, because the variable is definitely

defined in a class as a member variable or defined as a local variable in a method, so this

The VarDeclaration node must be traversed by a ClassDeclaration node or a

MethodDeclaration node, and a ClassTable or MethodTable is passed in the process of

the two nodes parse. After judging the properties of “argu”, variables can be added to it.

Figure 2-4 Visiting VarDeclaration node

The above process implements traversing to a variable definition node and storing

the type and name of the variable definition in the corresponding class node or method

node.

In the process of constructing the table, we not only need to pay attention to various

Declaration nodes, but also pay attention to the Identifier node. This is because the

specific class of the definition of the class object cannot be judged in the previous process.

For example, there is a class. “A”, a variable “b” is defined in the code with “A”, which

is “A b”. In VarDeclaration (Figure 2-4), its class name cannot be simply judged by

judging “which”, because “which”s of class variables are all 3, so when traversing the

“f0” of VarDeclaration, it will traverse to an Identifier, and the second parameter passed

public AbstractTable visit(VarDeclaration n, AbstractTable argu) {

TypeTable type;

type = new TypeTable(n.f0.f0.which, argu.MethodName,

argu.ClassName, argu.Global);

n.f0.accept(this, type);

 //To check whether this variable is a method local variable

 if(argu instanceof MethodTable)

((MethodTable)argu).addVariable(n.f1.f0.tokenImage, type);

 else if(argu instanceof ClassTable)

 ((ClassTable)argu).addVariable(n.f1.f0.tokenImage, type);

 n.f1.accept(this, argu);

 n.f2.accept(this, argu);

 return type;

 }

HUST Senior Project [Undergraduate Thesis]

14

in is TypeTable, so this Identifier is a variable type. But in the visit method of the

Identifier node (Figure 2-5), it is only necessary to determine whether the parameter

passed is a TypeTable. If so, it indicates that this is a class name, and then the class name

is saved to the TypeTable and passed to the previous VarDeclaration node, and the

VarDeclaration node is the b variable and the A type can be saved to the corresponding

ClassTable or MethodTable, and the definition of the class variable is saved.

Figure 2-5 Visiting Identifier node

After traversing all the nodes and adding information to the key nodes, we complete

the construction of the symbol table, followed by type checking. In the work of type check,

we also need to design a visitor to traverse the syntax tree and check for errors in the code

during this traversal. This visitor is also extends from the GJDepthFirst class, because we

also need to pass in the global table we just saved.

For example, in the most complex node of all——MessageSend node (Figure 2-6),

there are five child nodes, “f0” to “f5”. Where “f0” is a PrimaryExpression, “f2” is an

Identifier, and “f4” is an ExpressionList. In fact, this node is a method using such as

“f0.f2(f4)”. At this point we need to first determine whether this “f0” is a class variable,

first set a TypeTable type variable and pass it to the accept method of “f0” to get its type,

and then judge whether the type is a class type, if not, then return the type error. Then

determine whether the class type has been defined, and if so, determine whether the “f2”

method exists, and if it exists, continue. Then set a MethodTable type variable and pass

it to the accept method of “f4”, a temporary MethodTable object can be obtained with the

parameters whose type are the same as ExpressionList, and determine whether this

 public AbstractTable visit(Identifier n, AbstractTable argu) {

 //Only if the ID's type is TypeTable can edit, if it's

MethodName or ClassName, it wouldn't work

 if(argu instanceof TypeTable &&

((TypeTable)argu).isClassType())

 ((TypeTable)argu).Type = n.f0.tokenImage;

 n.f0.accept(this, argu);

 return null;

 }

HUST Senior Project [Undergraduate Thesis]

15

object’s parameters match parameters type of the “f2” method object. If all of them

matches, the type check of the MessageSend node is completed, and the TypeTable of the

incoming argu is set to the return type of the “f2” method, because it may be judged by

the upper node.

HUST Senior Project [Undergraduate Thesis]

16

Figure 2-6 Visiting MessageSend node

Another example is about the following statement: “i=i+(i+1)” (Figure 2-7).

 public String visit(MessageSend n, AbstractTable argu) {

 TypeTable exp = new TypeTable(argu);

 String str1 = n.f0.accept(this, exp);

 MethodTable method = null;

 if(!(exp.isClassType())) //If exp is not class

 argu.exit(1);

 else {

 ClassTable temp = argu.Global.getClassTable(exp.Type);

 if(temp == null) //If there's no exp's declaration

 argu.exit(1);

 else {

 method = temp.getMethodTable(n.f2.f0.tokenImage);

 if(method == null) //If there's no this method's

declaration

 argu.exit(1);

 }

 }

 TypeTable type = new TypeTable(argu);

 n.f1.accept(this, argu);

 String str2 = n.f2.accept(this, type);

 n.f3.accept(this, argu);

 //Get a temp method as f4's parameters formal and compare with

calling method

 MethodTable tempmethod = new MethodTable(argu.MethodName,

argu.ClassName, method.ReturnType, argu.Global);

 String str3 = n.f4.accept(this, tempmethod);

 //Check whether two method's parameters number same

 if(method.ParamTypes.size() != tempmethod.ParamTypes.size())

 argu.exit(1);

 //Check whether each parameter in two method match

 for(int i = 0; i < method.ParamTypes.size(); i++)

 if(!argu.MatchType(method.ParamTypes.get(i),

tempmethod.ParamTypes.get(i)))

 argu.exit(1);

 ((TypeTable)argu).Type = method.ReturnType.Type;

 n.f5.accept(this, argu);

 return str1 + "." + str2 + "(" + str3 + ")";

 }

HUST Senior Project [Undergraduate Thesis]

17

Figure 2-7 Parse tree for the statement “i=i+(i+1)”

This is a recursive process. Each Expression node has undergone a visit and accept

process, and each time they visit and accept the node, the TypeTable is passed in order to

represent the type of the node. In the override method, this process is also implemented.

After TypeTable types of the left and right nodes of the bottom of the PlusExpression are

both determined and are int types, the int type is returned as the TypeTable of the node,

and then in the previous PlusExpression, the type on the left has determined as the int

type, and the type on the right has just been determined as int. The TypeTable of this node

is also set to the int type. Finally, in the topmost AssignmentStatement node, we have

determined the type determined by the identifier on the left, and the type of the Expression

on the right is just determined. If they are the same, the statement node is checked.

2.5 Test Results

Firstly, the result for the Phase1Tester[8] is shown as figure 2-8.

HUST Senior Project [Undergraduate Thesis]

18

Figure 2-8 Result for the Phase1Tester

Secondly, by overriding the visit method of NodeToken, it can print out each

NodeToken visited for debugging, thus we can know what nodes are traversed. In this

way, we can also determine whether the location of the program error during the

inspection is consistent with the preset error point. The results are shown in the figure 2-

9 and figure 2-10, it can be seen that the return nodes of the wrong types are exactly the

same as the preset nodes.

HUST Senior Project [Undergraduate Thesis]

19

Figure 2-9 Type error caused by mismatch of parameters for Change method

Figure 2-10 Type error caused by unknown “sz1”

2.6 Conclusion

To sum up, in this phase two visitors extend GJDepthFirst: FirstVisitor and

SecondVisitor to type check a MiniJava program. The former is used to visits nodes in

the syntax tree, builds a symbol table, which stores all the defined variables, methods,

and classes, that is, constructs a symbol table so that the program can use it to query

existed variables, methods, and classes at anytime, anywhere during the second visit; and

detects redeclaration error. The latter consults symbol table to type check the statements

and expressions, then either approves or rejects the program.

Although result seems to be positive regards to the Phase1Tester, improvement

about error handling can be made in the future. Specifically, when the type-checker

detects a type error or an undeclared identifier, it should print an appropriate error

message for each error. After that, it should recover an error as if a valid expression had

been encountered and continue, because the programmer would like to be told of all the

errors in the program[11].

HUST Senior Project [Undergraduate Thesis]

20

3 Intermediate Code Generation

3.1 Introduction

The goal of phase two is to translate programs in the MiniJava language to programs

in a low level assembly-like language—Vapor language. Vapor programs are described

as a list of functions and data segments. Since in contrast to architecutal assembly

languages that support a finite number of registers, Vapor functions can use an unbounded

number of variables, the main challenge in the translation from MiniJava to Vapor lies in

mapping objects to memory and object-oriented method calls to function calls. We firstly

created a symbol table by analyzing the MiniJava program which is similar to the first

step in the previous phase. Then we generated intermediate Vapor code according to that

symbol table.

3.2 Vapor Language

Vapor program is a set of functions and data segments. Vapor has two types of global

data segments. A const segment is for read-only data (like virtual function tables). A var

segment is for global mutable data. Each section starts with a data label and is followed

by static data values. Each entry in a data segment is four bytes long. The syntax for a

function definition is shown in figure 3-1[12].

Figure 3-1 Syntax for a function definition

func FunctionLabel(params...)

body...

where Each line of the body of a function is one of:

• code label: Label:

• assignment: Location = Value

• branch: if Value goto CodeAddress

• goto: goto CodeAddress

• function call: call FunctionAddress (Args...)

• function return: ret Value

• call to built-in operation: OpName (Args...)

HUST Senior Project [Undergraduate Thesis]

21

3.3 Methodology

To translate programs in the MiniJava language to programs in the Vapor language,

the overall procedure can be divided into two steps. The first step is almost the same as

the first step in phase one (Chapter 2.4), which is constructing a symbol table by analyzing

the MiniJava program. The second step is making use of the symbol table constructed in

the first step to generate intermediate Vapor code.

Compared to the symbol table in the phase one, the symbol table in this phase was

slightly modified, for example, in the following two aspects:

1) Changing the type of hash style in the ClassTable from HashTable to

LinkedHashMap, thereby ensuring the sequence of key-value pair of methods

is the same as the sequence that methods are stored in the ClassTable.

2) It’s convenient to put methods which add new classes and methods into the

AllClassTable when calling them.

In the second step, we built four classes: Counter, Exp, Printer, and Generator. The

aim of class Counter is keeping int type counter and flags, for instance, field tCount is

applied to calculate the value of num of all t.num variables in each method, field

indentation is devoted to calculating the degree of indentation of codes, and field boolean

alloc is to indicate whether the method arrayallocz and its feature codes need printing.

The class Exp records the corresponding type which each Expression belongs to. This is

because expressions are not allowed being nested in the grammar of Vapor language. If

there is a expression which consists of two primary-expressions in a MiniJava program,

since a primary-expression trivially belongs to the expression, we need firstly change the

primary-expression on the right-hand side to a t.num variable, then perform operation on

the primary-expression on the left-hand side and t.num bariable on the right-hand side. In

this context, the class Exp appears to be attractive as it stores the type of expressions, the

value or string of expressions, and the class an expression belongs to. Whenever we need

check which type an expression belongs to or compare expressions, we can call class Exp

in class Generator which will be discussed below. The class Printer is used to store all

HUST Senior Project [Undergraduate Thesis]

22

kinds of print methods, which are based on customized formatting print method printf(),

and three methods which are likely to be used repeatedly: printVar(), printNullPointer()

and printOutOfBounds(), which are used to print expression on the right-hand side when

nested as mentioned above, error about NULL pointer, and contents regarding array

respectively. The class Generator extending the class DepthFirstVisitor is the most

important class in this phase. Generator receives symbol table and initializes counter and

printer during the initialization, then the vapor code can be generated by it.

3.4 Implementation

Here we focus on several visiting methods and sketch how to implement them. In

“public void visit(MainClass n)” method (Figure 3-2), the first thing we need to do is to

establish a list of functions. Thus, we firstly traverse HashTable in AllClassTable. As

mentioned in previous phase, the AllClassTable uses a HashTable to store all classes

whose names correspond to their ClassTable object. Therefore, after traverse, we can

obtain ClassTable objects of all classes, and then obtain the name of each class through

its ClassTable. In the vapor language, every class owns their functions. Thus, when

traversing a specific class, we need enter its ClassTable searching every MethodTable to

gain information of all its functions. In this way, we can format print a list of functions of

that class. What should be highlighted is that we need control the indentation all the time

so that a more readable code can be generated. Finally, the method will print information

of Main function.

HUST Senior Project [Undergraduate Thesis]

23

Figure 3-2 Code for visiting MainClass method

As for “public void visit(MethodDeclaration n)” method (Figure 3-3), we need

construct declaration of a method. At the beginning, there is a series of initialization for

that method, including initializing tCount to 0, which is because t.num of every method

counts from 0, and adjust format of indentation. Next, through the method accept undergo

iteration. After the iteration, namely, at the end of that method, we print the content related

to return value. A declaration of a method accomplished.

public void visit(MainClass n) {

 //At first, print the classes except main class

 for (ClassTable classtable : Global.AllClass.values()) {

 if (!classtable.ClassName.equals(n.f1.f0.tokenImage)) {

 printer.printf("const vmt_%s", classtable.ClassName);

 counter.indentation++;

 //for each class, print its methods

 for (String methodName : classtable.Methods.keySet())

 printer.printf(":%s.%s", classtable.ClassName,

methodName);

 counter.indentation--;

 System.out.println();

 }

 }

 //print the main function

 printer.printf("func Main()");

 counter.indentation++;

 //start recursion

 n.f15.accept(this);

 //At last, print the ret

 printer.printf("ret");

 counter.indentation--;

 }

HUST Senior Project [Undergraduate Thesis]

24

Figure 3-3 Code for visiting MethodDeclaration method

Let’s have a closer look at the iteration. During the iterative visit process, different

statements and expressions will be visited. For example, as for ifstatement (Figure 3-4)

consisting of expression(f2), if statement(f4) and else statement(f6). Because vapor

language can’t make expression as if expression, the if can only judge the variable like

“t.num”, so we need to get “t.num = if expression” firstly and then put the t.num in the

beginning of if statement. Then get into iteration of if statement and else statement. At

last, we need to add the “if end” code.

public void visit(MethodDeclaration n) {

 System.out.println();

 MethodTable methodtable =

Global.nowclass.Methods.get(n.f2.f0.tokenImage);

 //set the working methodtable

 Global.nowmethod = methodtable;

 StringBuilder str = new StringBuilder();

 //print the params of a method

 for (String p : methodtable.Params.keySet()) str.append(" "

+ p);

 printer.printf("func %s.%s(this%s)",

Global.nowclass.ClassName, methodtable.MethodName,

str.toString());

 //for each method, vapor code need to reset the t count for

variables

 counter.tCount = 0;

 counter.indentation++;

 n.f8.accept(this);

 n.f10.accept(this);

 printer.printf("ret %s", printer.printVar(temp));

 counter.indentation--;

 Global.nowmethod = null;

 }

HUST Senior Project [Undergraduate Thesis]

25

Figure 3-4 Code for visiting IfStatement method

A complicated example about expression is and expression (Figure 3-5). The and

expression can be translated to two if0 instructions that check if each of the operands is

zero, assign zero to the result and goto the end label. Before the end label, one is assigned

to the result. The not expression can be similarly translated. To implement this process,

we need firstly gain the left-hand side expression in and expression and keep it as a t.num,

then use if statement to judge this t.num. Similarly, we gain the right-hand side expression

in and expression and keep it as a t.num. Finally, we use two if and else judgement to

realize the whole process. It should be pointed out that after the process of handling and

expression, the resulting expression need passing on to the upper level. That’s to say,

storing the resulting expression in the Exp temp for the visitor of upper level convenience

of using.

public void visit(IfStatement n) {

 //get real if expression

 n.f2.accept(this);

 String elsestat = "if1_else_" + counter.ifelse++;

 String endstat = "if1_end_" + counter.ifend++;

 //print if expression like "t.num expression"

 String condVar = printer.printVar(temp);

 //print if expression like "if0 t.num goto : somewhere"

 printer.printf("if0 %s goto :%s", condVar, elsestat);

 counter.indentation++;

 //print if statement

 n.f4.accept(this);

 printer.printf("goto :%s", endstat);

 counter.indentation--;

 printer.printf("%s:", elsestat);

 counter.indentation++;

 //print else statment

 n.f6.accept(this);

 counter.indentation--;

 printer.printf("%s:", endstat);

 }

HUST Senior Project [Undergraduate Thesis]

26

Figure 3-5 Code for visiting AndExpression method

3.5 Test Results

The result for the Phase2Tester[8] is shown as figure 3-6. All passes indicate the

Vapor programs translated from preset MiniJava programs by our translator are exactly

consistent with the Vapor language specification.

public void visit(AndExpression n) {

 //get left expression

 n.f0.accept(this);

 Exp left = temp;

 String andElseLabel = "and_else_" + counter.andelse++;

 String andEndLabel = "and_end_" + counter.andend++;

 //print left expression like "t.num = expression"

 String tleft = printer.printVar(left);

 //print first if expression like "if0 t.num goto : somewhere"

 printer.printf("if0 %s goto :%s", tleft, andElseLabel);

 counter.indentation++;

 //get right expression

 n.f2.accept(this);

 Exp right = temp;

 //print right expression like "t.num = expression"

 String tright = printer.printVar(right);

 //give result a "t.num" label

 String res = "t." + counter.tCount++;

 //print this expression like "t.num(result) = t.num(right

expression)"

 printer.printf("%s = %s", res, tright);

 printer.printf("goto :%s", andEndLabel);

 counter.indentation--;

 printer.printf("%s:", andElseLabel);

 printer.printf("%s = 0", res);

 printer.printf("%s:", andEndLabel);

 //save this expression and pass to next visitor

 temp = new Exp(res, Exp.Type.ID);

 }

HUST Senior Project [Undergraduate Thesis]

27

Figure 3-6 Result for the Phase2Tester

HUST Senior Project [Undergraduate Thesis]

28

4 Register Allocation

4.1 Introduction

The goal of phase three is to translate programs in the Vapor language to programs

in the Vapor-M language. Since Vapor-M provides registers and stacks rather than local

variables, the local variables provided by Vapor should be mapped to registers and run-

time stack elements. We firstly created a register table by data flow analysis of each

function in a Vapor program. Then we generated Vapor-M code according to that register

table. The main challenge in the translation from Vapor to Vapor-M is Vapor-M

Language Specification and considering the finite registers during arguments passing.

4.2 Vapor-M Language

A Vapor-M program is almost the same as a Vapor program except that instead of

local variables, registers and stack memory are used. Rather than local variables we have

23 registers: $s0..$s7, $t0..$t8, $a0..$a3, $v0, $v1. Registers are global to all functions

(whereas local variables were local to a function activation). To follow MIPS calling

conventions in phase 4 discussed in Chapter 5, we use the registers as table 4-1 indicates.

Table 4-1 Usage of registers in Vapor-M

Register(s) Usage

$s0..$s7 general use callee-saved

$t0..$t8 general use caller-saved

$a0..$a3 reserved for argument passing

$v0 returning a result from a call

$v0, $v1 can be used as temporary registers for loading values from the stack

Each function has three stack arrays called in, out, and locals. The in and out arrays

are for passing arguments between functions. The in array refers to the out array of the

caller. The local array is for function-local storage that can be used for spilled registers.

HUST Senior Project [Undergraduate Thesis]

29

The sizes of these arrays are declared at the top of every function (instead of a parameter

list). Each element of each array is a 4-byte word. The indexes into the array is the word-

offset (not the byte offset). Array references can be used wherever memory references

can be used. So in[1] refers to the second element of the in stack array[9].

4.3 Register Table

To translate programs in the Vapor language to programs in the Vapor-M language,

the overall procedure can be divided into two parts. The first part is constructing a register

table, which maps variables to registers and function-local (spilled registers). The second

part is making use of the register table constructed in the first step to generate Vapor-M

code.

Each function has a register table, which maps variables to registers and function-

local (spilled registers). Considering the data structure, we used the varNode class to store

information of each variable (this, t.n, aux, etc.) in Vapor code. Information recorded in

the varNode class includes the name of the variable, its corresponding register, live

interval (specify the range by the number of line), and other information needed by visitor

pattern in the first part. Register table connected these varNodes acting as a linked list to

support the translation in the second part.

4.4 Linear Scan Algorithm

In the first part, we assign four tables——varTable, varList, localVarList, and

spilledParamList to each function. For example, as to the first function, i.e. the function

with the VFunction.index equal to 0, localVarList should store varNodes whose

corresponding variable cannot be stored in registers due to the limitation that all registers

are not available, thus can be only stored in the local array. VarTable is a HashMap which

should store names of all variables in this function and their corresponding varNodes.

VarList is similar to the varTable but records all variables in the order of sequence of their

appearance. spilledParamList The purpose of the first part is to fulfill information of each

variable in the function from the beginning to the end.

HUST Senior Project [Undergraduate Thesis]

30

It can be divided into 3 steps to maintain information of every variables in a function.

The first step is to find out all variables in a function and their corresponding live ranges,

which can be pictured as figure 4-1 below. The live ranges can be calculated using the

active sets by a top-down scan of the instructions.

Figure 4-1 An example for liveness analysis (The number of line indicates the

liveness period)

In the second step, we then used the linear scan algorithm from Massimiliano Poletto

and Vivek Sarkar’ paper[13] for register allocation. It is easy to implement this algorithm

as figure 4-2 shows below since we have already obtained live intervals in the first step.

Figure 4-2 Pseudo-code for linear scan algorithm

For example, the implementation for LINEARSCANREGISTERALLOCATION

function is shown in figure 4-3 below.

HUST Senior Project [Undergraduate Thesis]

31

Figure 4-3 Implementation for LINEARSCANREGISTERALLOCATION function

Besides the three functions metioned in the algorithm, to meet the requirement,

adding interval i to active and being sorted by increasing end point or sorting intervals in

order of start point, we need designe an increasingAdd function to insert intervals.

Finally in the third step, we combined information collected after register allocation

to construct register table.

It should be noticed that this phase also used visitor pattern, and extended

VInstr.Visitor. However, in contrast to visitor pattern for MiniJava that traverses the

syntax tree from the root, the program visits Vapor code line by line. This is because the

aim of the first step is to gain live ranges, thus we only need focus on variables in each

line of the Vapor code.

 // LinearRegisterAllocation Start

 // active <- {}

 LinkedList<VarNode> active = new LinkedList<VarNode>();

 int funcIndex = 0;

 for (LinkedList<VarNode> varList : varLists) {

 // For each function, linear scan it initially

 workIndex = funcIndex++;

 for (VarNode var : varList) {

 // For each live interval (variable)

 expireOldIntervals(var, active);

 // Note that we need to know whether this variable

overlap a call instuction

 if (active.size() == 17 || (var.overLapCall &&

freeSRegs == 0)) {

 spillAtInterval(var, active);

 } else {

 // A register removed from pool of free registers

 var.register = getFreeReg(var.overLapCall);

 // Add variable to active set, sorted by increasing

end point

 increasingAdd(var, active);

 }

 }

 }

HUST Senior Project [Undergraduate Thesis]

32

In the second part, translation was mainly based on variable and register pairs

obtained from linear scan or local information table, which is the hash table of variable

and register pairs changed from that of variable and varNode pairs. Through visitor

pattern visiting each line of Vapor code, variables such as this and t.n in that line will be

translated into the form in registers or local. During the initialization of translation, global

variables in the local, or namely, in the stack, and code related to the offset of functions

should be retained in their original form. We regarded the smallest unit during the

translation part as the same as in the previous part——function. For each function, we

should firstly check the number of parameters passed in in case that we need adjust the

value of in, out and local, which was indicated by MoreThan4.vapor test. If the number

of parameters passed in n is greater than 4, that’s to say, n is greater than the number of

$a registers reserved for argument passing, then the value of in should be n-4 and the

value of out should be the number of parameters passed to other functions called in current

function minus 4. Take the MoreThan4.vapor (Figure 4-4) as an example, in and out for

MT4.Start function both are 3. This is because this function receives 7 parameters but the

first 4 parameters have already used 4 $a registers, thus the last 3 parameters should be

saved in in. Meanwhile, MT4.Change function also needed 7 parameters is called in this

function, thus before calling that function at the time of register allocation, 4 parameters

passed to MT4.Change function should be saved in $a registers, and the remaining 3

parameters then are saved in out. As for MT4.Change function, similarly, the value of in

is 3 as analyzed before. Since this function doesn’t call other function whose parameters

are greater than 4, the value of out is 0.

HUST Senior Project [Undergraduate Thesis]

33

Figure 4-4 Part of Vapor code for MoreThan4 program

Part of Vapor-M code for MoreThan4.vapor is shown in figure 4-5 below, where $t7

is MT4.Change function. At this time 7 parameters should be passed in, 4 of which are

passed in through registers, and the remaining 3 of them are passed through out. Here the

out of MT4.Start is just the in of MT4.Change.

Figure 4-5 Part of Vapor-M code for MoreThan4 program

Eventually it is the time to translate instructions in functions through visitor pattern.

Generally, when there are enough available registers, we can directly replace the variables

with registers. But special cases may occur, for example, when visiting VCall (call

function in vapor) instruction, we need check the number of parameters passed in call

firstly. The first 4 parameters are saved in 4 $a registers. If the number of parameters is

greater than 4, then from the fifth parameter to the last one should be passed out through

out. Meanwhile, when the call instruction is translated, we need check if the address of

input is for a register. If not for a register but for a local, then the local value should be

HUST Senior Project [Undergraduate Thesis]

34

passed to $v0 register, then $v0 register should be called, finally save the return value to

$v0 register.

4.5 Test Results

The result for the Phase3Tester[8] is shown as figure 4-6. All passes indicate that the

Vapor-M programs translated from preset Vapor programs are exactly consistent with the

Vapor-M language specification.

Figure 4-6 Result for the Phase3Tester

HUST Senior Project [Undergraduate Thesis]

35

5 Activation Records and Instruction Selection

5.1 Introduction

In this phase, the Vapor-M registers and stacks should be mapped to MIPS registers

and runtime stack. In addition, the Vapor-M instructions should be mapped to MIPS

instructions[14]. Translating a Vapor-M program to a MIPS program is the simplest phase

among four phases since we only need to visit the program once and do some simple

operation. The main challenge is about the understanding and implementation of the stack

frame constructing, the computation of stack offset and computation related to in and out.

During the implementation, we need be familiar with the developer document, so we can

find small skill of every class in this parser through the document, such as finding the

offset of the stack itself.

5.2 Implementation

To translate a Vapor-M program to a MIPS program, the overall procedure can be

divided into three steps. The first step is according to the MIPS instruction descriptions

translating the .data segment and .text segment, which are known before visited. The

second step used visitor pattern to visit the Vapor-M code line by line. Different from

visitors in phase three, here the visitor requires registers string array as the parameter.

Namely, parser will parse these strings as registers. The third step is to translate strings

related to align after visited.

As for the first step, we only need the information from parser to translate line by

line. Consider the .data segment at first as the figure 5-1 shows below, it should be noticed

that there is a ‘:’ at the beginning of each line within the data in Vapor-M language, thus

what should we do is just remove those ‘:’.

 ->

HUST Senior Project [Undergraduate Thesis]

36

Figure 5-1 The left is data segment for Vapor-M program LinearSearch, the right is

MIPS instructions after translation.

Next for the .text segment (code segment), there is a standard format for the

beginning of .text segment in the MIPS. At first we enter the Main function and print the

“jal Main” directly. Then for the normal exit from a program, it should print “li $v0 10”

and “syscall” directly. Now the return value of the program store in $v0, although it will

never be used in the phase. Because we will use three syscalls: print, error and heapAlloc

in the following translation, we put these syscalls in the .text segment as shown in figure

5-2.

Figure 5-2 Text segment includes syscalls: print, error and heapAlloc.

In the second step, we need translate functions. In each function, there is also a

standard heading, which conducts operations as shown in the figure 5-3.

HUST Senior Project [Undergraduate Thesis]

37

Figure 5-3 Pseudo-code for functions standard heading translation[9]

We visit the Vapor-M code instruction by instruction. Since we have already

allocated registers in phase three, and Vapor-M language is a low level assembly-like

language, so the translation during the visit is obvious. However, there still several things

we need care about. The first thing need caring is similar to what mentioned before that

within .data segment in Vapor-M, which contains the function name and its offset, there

is a ‘:’ at the beginning of each line. Thus, when we translate instructions including these

functions or syscalls, we need remove these colons as shown below. (The right in MIPS

is translated from the left in Vapor-M.)

[$t0] = :vmt LS -> la $v0 vmt LS

The second thing need focusing is translating three-operand instruction. Take the

addu and addiu instructions as an example. These two instructions both have three

operands——dest, arg1 and arg2. We can print dest and arg1 directly. But when

translating arg2, we need check if arg2 is an instance of VVarRef class. If the answer is

yes, that means arg2 is a register, then we need print addu. If not, that means arg2 is an

immediate value, then we need print addiu. The case of translating Lt instruction is similar.

It also has three operands. But this time we need check arg1, which means arg1 can be a

register or an immediate value. If arg1 is not an instance of VVarRef class, that means it

is an immediate value. Since an immediate value cannot be a destination operand, we

need exchange the position of arg1 and arg2, then use sgtu to print, as shown below.

$t1 = Lt(0 $t1) -> sgtu $t1 $t2 0

HUST Senior Project [Undergraduate Thesis]

38

The third thing need concerning is that we need store the string after Error into a

string list when translating the Error instruction in Vapor-M. These strings are exactly

related to align.

The fourth thing as the most difficult thing lies in the translation of memory write

instruction (sw instruction in MIPS). When the dest operand is a address, we need

consider the property of the dest as well as the souce operands. For a destination operand,

if it contains a $sp register, which means it is an address related to registers, then we need

regard stack as the base address, and we need compute the offset of the destination

operand through the offset of the stack itself and the answer of the question that whether

the area the stack is in is Local. Meanwhile, if the source operand is an immediate value,

then we need store this immediate value in $v0 register, and then assign the value of $v0

to the destination operand as shown in figure 5-4 below. In this example, the destination

operand is [$t1+4], an address about registers. Because the the source operand is an

immediate value, the immediate value should be put into $v0 at first, and then put the

value in $v0 into the the memory location of $t1+4.

 ->

Figure 5-4 An example for the translation of memory write instruction when the

source operand is an immediate value.

The last thing should be noticed is that the process of change of stack frame at the

time of exit from a function should be translated for the translation of ret instruction as

shown below:

Figure 5-5 Pseudo-code for ret instruction translation[9]

HUST Senior Project [Undergraduate Thesis]

39

The final step is to translate strings related to align after visited. In the second step,

we have already stored the string after Error into a string list. At this time, we just print

them out as shown in the figure 5-6.

Figure 5-6 Part of code translatING strings related to align

5.3 Test Results

The result for the Phase4Tester[8] is shown as figure 5-7. All passes indicate the

MIPS programs translated from preset Vapor-M programs are exactly consistent with

the MIPS instructions.

Figure 5-7 Result for the Phase4Tester

printer(".data");

printer(".align 0");

indentation++;

printer("_newline: .asciiz \"\\n\"");

for(int i = 0; i < strList.size(); i++)

 printer("_str%d: .asciiz \"%s\\n\"", i, strList.get(i));

indentation--;

HUST Senior Project [Undergraduate Thesis]

40

6 Summary

A MiniJava-MIPS compiler is a big program, careful attention to modules and

interfaces between phases prevents chaos. Thanks to the tools JavaCC parser generator and

Java Tree Builder (JTB), lighten the burden on lexical analysis and parsing. The JTB uses visitor

pattern make it easier to use two passes to generate vapor code from program in the

MiniJava language as well as to do type-checking. Then through analyzing the grammar

for three languages and instructions in MIPS, translating the Vapor language to the

Vapor-M language and eventually to MIPS machine code becomes follow a rational line.

Four phases are modularized with the output of the previous module to be the input

of the next module, thereby facilitating porting and local optimization. However, it can

be considered to integrate all phases and design a GUI for freshman in the future, making this

work to be regarded as a more mature, complete and user-friendly work. It should also be

pointed that although it may not improve the performance of the compiler, an alternative

to JBT and JavaCC is to do lexical analyzer generation using flex[15] and parser generation

using bison[16].

HUST Senior Project [Undergraduate Thesis]

41

Acknowledgements

作为本科专业是生物医学工程的学生，我在大四毕业设计选择计算机科学相关的工作是

新奇而富有挑战的，如今能够圆满交出答卷，是我何其幸运这一路而来得到许多支持与帮助。

首先感谢我的母校 HUST、我的学院 SES 提供了众多资源与平台，让我有机会参加 UCR GPP-

E 项目，学习计算机相关的核心专业课程，认识到人生还可以拥有更多可能性。特别感谢我的

导师邓勇教授对我的指引教导，对论文的悉心修改，哪怕我身在彼岸也能感受到关怀温暖；感

谢 UCR 的 Mohsen Lesani 副教授在实践层面的指导和 Chengyu Song 副教授在理论方面的教

学；感谢学院老师对论文进度的关注；感谢助教高潋在具体问题上的耐心解答；感谢队友李国

稔的共同奋斗和有益讨论；感谢曹婷婷同学对我论文格式调整的帮助，感谢 allen、sili 同学无

形助攻；是你们让这篇论文更加成熟高质。另外还要感谢相伴成长的同学好友，朝夕相处的室

友，祝福你们前程似锦，学业有成。最后感谢我的父母，你们是我在异国他乡的亲情支柱，感

谢你们的默默付出与辛勤培养，文尽，思念之情难止，尤甚。

HUST Senior Project [Undergraduate Thesis]

42

References

[1] Aho, A.V. Compilers: principles, techniques and tools (for Anna University),

 2/e. Pearson Education India, 2003.

[2] Brooks Jr, F.P. The Mythical Man-Month: Essays on Software Engineering,

 Anniversary Edition, 2/E. Pearson Education India, 1995.

[3] Bornat, R. Understanding and writing compilers: a do-it-yourself guide. Ma

cmillan; 1979.

[4] Sanders, A. MINI-L-Compiler-Project, Github website, https://github.com/asa

nd017/MINI-L-Compiler-Project. 2017-03-26

[5] 姚励, 束永安. "用 JavaCC 构造编译器的方法." 计算机工程 29.9(2003):39-4

1

[6] UCLA Compilers Group. Java Tree Builder, UCLA Compilers Group websit

e, http://compilers.cs.ucla.edu/jtb/. 2004

[7] Palsberg, J. and Jay, C.B. "The essence of the visitor pattern." In Proceedi

ngs. The Twenty-Second Annual International Computer Software and Application

s Conference (Compsac'98)(Cat. No. 98CB 36241), pp. 9-15. IEEE, 1998.

[8] Xiong, J.Q. Testers for four Phases, Github website, https://github.com/BEA

R000777/PhaseXTester, 2019-06-27

[9] Lesani, M. Compiler from Java to MIPS, assistant professor Mohsen Lesani

 teaching website, https://www.cs.ucr.edu/~lesani/teaching/cp/cp.html, 2019-01-07

[10] Palsberg, J. The MiniJava Type System, professor Jens Palsberg teaching

website, http://web.cs.ucla.edu/~palsberg/course/cs132/miniJava-typesystem.pdf, 2014

-10-02

[11] Andrew, W.A. and Jens, P. "Modern compiler implementation in Java." (2

002).

[12] Palsberg, J. Vapor Language Specification, professor Jens Palsberg teaching

 website, http://web.cs.ucla.edu/classes/spring11/cs132/kannan/vapor.html, 2011-03-3

0

HUST Senior Project [Undergraduate Thesis]

43

[13] Poletto, M. and Sarkar, V. "Linear scan register allocation." ACM Transact

ions on Programming Languages and Systems (TOPLAS) 21, no. 5 (1999): 895-

913.

[14] Britton, R.L. MIPS assembly language programming. Pearson/Prentice Hall,

 2004.

[15] Gao, L. FLEX Tutorial, Lan Gao teaching website, http://alumni.cs.ucr.edu/

~lgao/teaching/flex.html, 2007-06-29

[16] Gao, L. Bison Tutorial, Lan Gao teaching website, http://alumni.cs.ucr.edu/

~lgao/teaching/bison.html, 2007-06-29

	Word 书签
	OLE_LINK225
	OLE_LINK234
	OLE_LINK336
	OLE_LINK335
	OLE_LINK328
	OLE_LINK277
	OLE_LINK278
	OLE_LINK248
	OLE_LINK246
	OLE_LINK247
	OLE_LINK249
	OLE_LINK194
	OLE_LINK195
	OLE_LINK197
	OLE_LINK196
	OLE_LINK200
	OLE_LINK201
	OLE_LINK199
	OLE_LINK203
	OLE_LINK202
	OLE_LINK262
	OLE_LINK263
	OLE_LINK265
	OLE_LINK264
	OLE_LINK261
	OLE_LINK257
	OLE_LINK258
	OLE_LINK256
	OLE_LINK255
	OLE_LINK118
	OLE_LINK119
	OLE_LINK124
	OLE_LINK125
	OLE_LINK259
	OLE_LINK254
	OLE_LINK198
	OLE_LINK206
	OLE_LINK207
	OLE_LINK209
	OLE_LINK208
	OLE_LINK408
	OLE_LINK409
	OLE_LINK282
	OLE_LINK283
	OLE_LINK271
	OLE_LINK272
	OLE_LINK269
	OLE_LINK270
	OLE_LINK404
	OLE_LINK369
	OLE_LINK370
	OLE_LINK25
	OLE_LINK26
	OLE_LINK30
	OLE_LINK47
	OLE_LINK48
	OLE_LINK49
	OLE_LINK50
	OLE_LINK66
	OLE_LINK148
	OLE_LINK149
	OLE_LINK18
	OLE_LINK17
	OLE_LINK21
	OLE_LINK22
	OLE_LINK19
	OLE_LINK20
	OLE_LINK23
	OLE_LINK13
	OLE_LINK14
	OLE_LINK312
	OLE_LINK313
	OLE_LINK3
	OLE_LINK4
	OLE_LINK314
	OLE_LINK315
	OLE_LINK67
	OLE_LINK68
	OLE_LINK82
	OLE_LINK96
	OLE_LINK116
	OLE_LINK115
	OLE_LINK106
	OLE_LINK107
	OLE_LINK108
	OLE_LINK104
	OLE_LINK105
	OLE_LINK109
	OLE_LINK110
	OLE_LINK111
	OLE_LINK112
	OLE_LINK69
	OLE_LINK113
	OLE_LINK114
	OLE_LINK320
	OLE_LINK321
	OLE_LINK140
	OLE_LINK141
	OLE_LINK146
	OLE_LINK147
	OLE_LINK142
	OLE_LINK143
	OLE_LINK347
	OLE_LINK348
	OLE_LINK350
	OLE_LINK349
	OLE_LINK352
	OLE_LINK353
	OLE_LINK12
	OLE_LINK24
	OLE_LINK28
	OLE_LINK27
	OLE_LINK31
	OLE_LINK29
	OLE_LINK357
	OLE_LINK356
	OLE_LINK32
	OLE_LINK33
	OLE_LINK131
	OLE_LINK132
	OLE_LINK36
	OLE_LINK35
	OLE_LINK37
	OLE_LINK38
	OLE_LINK42
	OLE_LINK39
	OLE_LINK40
	OLE_LINK41
	OLE_LINK133
	OLE_LINK134
	OLE_LINK130
	OLE_LINK129
	OLE_LINK135
	OLE_LINK6
	OLE_LINK7
	OLE_LINK137
	OLE_LINK136
	OLE_LINK11
	OLE_LINK10
	OLE_LINK139
	OLE_LINK138
	OLE_LINK144
	OLE_LINK145
	OLE_LINK162
	OLE_LINK163
	OLE_LINK375
	OLE_LINK374
	OLE_LINK366
	OLE_LINK365
	OLE_LINK152
	OLE_LINK153
	OLE_LINK379
	OLE_LINK166
	OLE_LINK164
	OLE_LINK165
	OLE_LINK380
	OLE_LINK381
	OLE_LINK43
	OLE_LINK8
	OLE_LINK44
	OLE_LINK5
	OLE_LINK90
	OLE_LINK89
	OLE_LINK155
	OLE_LINK154
	OLE_LINK34
	OLE_LINK51
	OLE_LINK52
	OLE_LINK382
	OLE_LINK383
	OLE_LINK55
	OLE_LINK56
	OLE_LINK91
	OLE_LINK92
	OLE_LINK95
	OLE_LINK58
	OLE_LINK45
	OLE_LINK46
	OLE_LINK93
	OLE_LINK94
	OLE_LINK88
	OLE_LINK87
	OLE_LINK83
	OLE_LINK84
	OLE_LINK79
	OLE_LINK78
	OLE_LINK97
	OLE_LINK156
	OLE_LINK157
	OLE_LINK158
	OLE_LINK159
	OLE_LINK70
	OLE_LINK71
	OLE_LINK72
	OLE_LINK73
	OLE_LINK74
	OLE_LINK75
	OLE_LINK80
	OLE_LINK81
	OLE_LINK85
	OLE_LINK86
	OLE_LINK53
	OLE_LINK54
	OLE_LINK59
	OLE_LINK57
	OLE_LINK61
	OLE_LINK60
	OLE_LINK62
	OLE_LINK63
	OLE_LINK65
	OLE_LINK64
	OLE_LINK76
	OLE_LINK77
	OLE_LINK160
	OLE_LINK161
	OLE_LINK99
	OLE_LINK98
	OLE_LINK102
	OLE_LINK103
	OLE_LINK100
	OLE_LINK101
	OLE_LINK394
	OLE_LINK393
	OLE_LINK398
	OLE_LINK397
	OLE_LINK122
	OLE_LINK123
	OLE_LINK172
	OLE_LINK173
	OLE_LINK171
	OLE_LINK170
	OLE_LINK169
	OLE_LINK168
	OLE_LINK1
	OLE_LINK2
	OLE_LINK178
	OLE_LINK179
	OLE_LINK180
	OLE_LINK181
	OLE_LINK177
	OLE_LINK176
	OLE_LINK175
	OLE_LINK174
	OLE_LINK182
	OLE_LINK185
	OLE_LINK186
	OLE_LINK184
	OLE_LINK183
	OLE_LINK218
	OLE_LINK219
	OLE_LINK15
	OLE_LINK9
	OLE_LINK216
	OLE_LINK215
	OLE_LINK190
	OLE_LINK217
	OLE_LINK205
	OLE_LINK210
	OLE_LINK128
	OLE_LINK150
	OLE_LINK193
	OLE_LINK204
	OLE_LINK167
	OLE_LINK151
	OLE_LINK236
	OLE_LINK191
	OLE_LINK192
	OLE_LINK127
	OLE_LINK126
	OLE_LINK212
	OLE_LINK211
	OLE_LINK223
	OLE_LINK227
	OLE_LINK226
	OLE_LINK214
	OLE_LINK213
	OLE_LINK411
	OLE_LINK410
	OLE_LINK253
	OLE_LINK187
	OLE_LINK252
	OLE_LINK222
	OLE_LINK221
	OLE_LINK189
	OLE_LINK188
	OLE_LINK233
	OLE_LINK232
	OLE_LINK231
	OLE_LINK228

